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Abstract. For a double semiconductor heterostructure having as interjacent layer an anisotropic
uniaxial polar material with the optical axis directed along the normal to the interface, the
eigenfrequencies and the eigenvectors of the field of the optical phonons are obtained in the
context of the dielectric continuum model.

The form of the operator describing the interaction between the phonon modes and an
electron is derived. The results are particularized to the case of a heterostructure made of
zincblende-type semiconductors InP and GaAs with the pseudo-morphic layer uniaxially distorted
by the built-in strain distribution.

1. Introduction

For a 3D system, many experimental and theoretical works have been done in the past
to study the morphic effects (in particular those effects induced by a homogeneous stress
distribution) in both the lattice dynamics and the electronic bands, respectively.

In the early 1980s the domain of the electronic properties of the strained-layer
superlattices and afterwards that of the strained heterostructures came to the attention of the
researchers due to their potentiality in manufacturing devices with enhanced performances.
The high-speed modulation-doped field effect transistor (MODFET) and the low-threshold
quantum well laser are two examples which benefited from the technique used to exploit the
effects of the built-in strain distribution on the electronic properties of the semiconductor
devices.

Apart from the case of the studies devoted to the electronic energy bands in strained
heterostructures where both effects, that of the strain distribution and that of the confinement,
are properly taken into account (Loset al 1996), the studies of the optical phonon modes
and their interaction with the conduction electron in strained heterostructures present either
the effect of the confinement according to theory developed by Mori and Ando (1989) for
heterostructures made of isotropic materials or the effect of the strains, using the results
obtained for 3D systems.

Investigating in the backscattering geometry the Raman spectra of the strained layers
of GaAs which have estimated thicknesses of 18 and 28Å and are grown on (001)-
oriented InP substrates, Pistolet al (1992) have obtained a strain shift of the LO0 phonon
frequency which agrees within 10% with the theoretical value predicted by continuum
models (dielectric, elastic).

We present here, in the context of the dielectric continuum model, the phonon modes
and their interaction with the conduction electron in an anisotropic semiconductor double

0953-8984/98/173845+13$19.50c© 1998 IOP Publishing Ltd 3845



3846 E R Racec and D E N Brancus

heterostructure (DHS). Based on the work of Pistolet al (1992) we apply our results to the
cases of strained semiconductor heterostructures InP/GaAs/InP and GaAs/InP/GaAs obtained
by growing the pseudo-morphic layers of GaAs and InP, uniaxially distorted, on the faces
(001) and (111) respectively. We are limiting ourselves to the dielectric continuum model
because the presence of the anisotropy and of the interfaces makes hopeless any attempt
to improve the treatment along the lines of more elaborate models (Ridleyet al 1994,
Trallero-Gineret al 1992) considered for simpler systems.

2. Equations of the model

We consider a double heterostructure (DHS) of two polar crystals, labelled 1 and 2, for the
sake of simplicity assumed diatomic, with the thicknessesl and l2, verifying the inequality
l � l2.

According to figure 1 the material 1, lying betweenx3 = ±l/2 with interfaces normal
to the x3-axis, is an anisotropic uniaxial crystal with the optical axis alongx3, and the
material 2 is an isotropic one.

Figure 1. Geometry of the double heterostructure.

In the absence of free charges, the only two contributions to the total charge density are
the bulk and the surface polarization charges. Thus, in the electrostatic approximation, the
equation for the scalar potential is (Wendler 1985, Englman and Ruppin 1968):

8(x, t) = − 1

4πε0

∑
j

∫
dx′

∂

∂xj

1

|x− x′|Pj (x
′, t) (1)

whereP(x, t) is the electric polarization field.
To avoid the difficulty of obtaining an equivalent of the Lorentz relation between the

local field and the macroscopic electric field, in this anisotropic case we are referring directly
to the equations of the Born–Huang model: denoting the optical phonon field and the electric
field by the vectorsu(x, t) andE(x, t) respectively, the equations of the model are (Merten
1972):

üi(x, t) = β11,i (x3)ui(x, t)+ β12,i (x3)Ei(x, t) (2a)

Pi(x, t) = β12,i (x3)ui(x, t)+ β22,i (x3)Ei(x, t) (2b)
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i = 1, 2, 3. In the system of equations (2), the coefficientsβ, in fact the elements
of some diagonal matrices, (Merten 1972), are defined according to each domain of the
heterostructure: isotropic/anisotropic/isotropic.

To allow a compact form of writing system (2) we introduce anx3-dependence of the
material parametersβ by using the Heaviside function. Thus:

β11,i (x3) = −ω2
TO,i(x3) (3a)

β12,i (x3) = [ε0(εi(0, x3)− εi(∞, x3))]
1/2ωTO,i(x3) (3b)

β22,i (x3) = ε0[εi(∞, x3)− 1] (3c)

where, similar to the expressions of the dielectric constants along the principal directions
εi(0, x3) and εi(∞, x3), for low and high frequency, respectively, the transverse-phonon
mode frequenciesωTO,i(x3) have the forms:

ωTO,i(x3) = ω(2)T O [H(−l/2− x3)+H(x3− l/2)] + ω(1)T O,i [H(x3+ l/2)−H(x3− l/2)] (4)

and

H(x3) =
{

1 x3 > 0

0 x3 < 0.
(5)

The superscript indices (1) and (2) in the above expressions are referring to the anisotropic
and isotropic domains of the heterostructure, respectively.

The equations (2) determine the components of the dielectric tensor:

εα(ω, x3) = εα(∞, x3)
ω2
LO,α(x3)− ω2

ω2
TO,α(x3)− ω2

(6)

where ωLO,α(x3) are the longitudinal phonon mode frequencies along the principal
directions; the indexα has been introduced to take into account the axial symmetry of the
system, withα =⊥ for i = 1, 2 andα = || for i = 3, the symbols|| and⊥ corresponding
to a direction that is either parallel or orthogonal to the optical axis, respectively. Following
Wendler (1985) we introduce the Cartesian basis:

e⊥(k) = k1

k
e1+ k2

k
e2 = k

k

eS(k) = k2

k
e1− k1

k
e2 (7)

e‖ = e3

which allows us to separate the field of phonons into an s-polarized partuS and a p-
polarized partuP , k being the in-plane wave vector. Performing the two-dimensional
Fourier transform used by Licari and Evrard (1977), for the componentsu⊥ andu‖ of uP
one obtains the following system of integral equations:

g⊥(ω, x3)u⊥(k, x3, ω) = −k
2

∫ l/2+l2

−l/2−l2
dx ′3 e−k|x3−x ′3|[χ⊥(ω, x ′3)g⊥(ω, x

′
3)u⊥(k, x

′
3, ω)

+i sgn(x3− x ′3)χ‖(ω, x ′3)g‖(ω, x ′3)u‖(k, x ′3, ω)] (8a)

ε‖(ω, x3)g‖(ω, x3)u‖(k, x3, ω)

= − k
2

∫ l/2+l2

−l/2−l2
dx ′3 e−k|x3−x ′3|[−χ‖(ω, x ′3)g‖(ω, x ′3)u‖(k, x ′3, ω)

+i sgn(x3− x ′3)χ⊥(ω, x ′3)g⊥(ω, x ′3)u⊥(k, x ′3, ω)] (8b)
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where

gα(ω, x3) =
ω2
TO,α(x3)− ω2

β12,α(x3)
(9)

χα(ω, x3) = εα(ω, x3)− 1 (10)

and

sgn(x3− x ′3) =
{

1 x3 > x ′3
−1 x3 < x ′3.

(11)

We are not taking into consideration the problem of the s-polarized part of the field of
phonons which verifies the equation

g⊥(ω, x3)us(k, x3, ω) = 0 (12)

because it does not interact with the conduction electron.

3. Normal modes

Following the procedure used by Wendler and Jäger (1983) which transforms the system (8)
of Fredholm-type integral equations into differential equations, the eigenvectors and the
eigenfrequencies of the field of phonons are obtained. Being solutions of the system
of integral equations (8), the eigenvectors of the field of phonons satisfy the boundary
conditions determined by the electrostatic theory (Englman and Ruppin 1968). Thus, at
every interface of a heterostructure, the normal component of the displacement field and
the tangential components of the electric field are conserved.

The equation foru⊥ is obtained by differentiating (8a) twice and replacing du‖/dx3

by the derivative of (8b). It is easy to see that, strictly in this anisotropic uniaxial case,
ω
(1)
LO,⊥, ω(1)LO,‖, ω

(1)
T O,⊥ andω(1)T O,‖ are not eigenfrequencies of the field of phonons so that the

obtained differential equations can be put in the form:

d2

dx2
3

u⊥(k, x3, ω) = k2ε⊥(ω, x3)

ε‖(ω, x3)
u⊥(k, x3, ω) (13a)

u‖(k, x3, ω) = − i

k

g⊥(ω, x3)

g‖(ω, x3)

d

dx3
u⊥(k, x3, ω). (13b)

Based on the equation (13a) one observes that depending on the sign of the ratio
r(ω) = ε

(1)
⊥ (ω)/ε

(1)
‖ (ω) and similar to the case of isotropic heterostructures (Mori and

Ando 1989) the phonon modes are classified as interface modes forr(ω) > 0 and confined
modes forr(ω) < 0. Having the same solution as for isotropic heterostructures, the problem
of so-called half-space modes (Mori and Ando 1989) was overlooked here.

Introducing into the integral equations (8) the solutions of the equations (13) (which
forms depends on the particular domain of the heterostructures) both the dispersion laws
and the form of the eigenmodes of the field of phonons are obtained.

3.1. Interface modes

With the accomplishment of the supplementary condition

ε
(1)
‖ (ω)ε

(2)(ω) < 0 (14)
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the frequenciesω0,µ,p of the interface modes are the solutions of the equation:

cosh[γ (ω)kl] = pε
(1)
⊥ (ω)ε

(1)
‖ (ω)+ (ε(2)(ω))2

ε
(1)
⊥ (ω)ε

(1)
‖ (ω)− (ε(2)(ω))2

(15)

verifying, for the two values of the parity index,p, the conditions:

ε
(1)
⊥ (ω)ε

(1)
‖ (ω) > (ε(2)(ω))2 for p = + (16a)

0< ε
(1)
⊥ (ω)ε

(1)
‖ (ω) < (ε(2)(ω))2 for p = − (16b)

whereγ (ω) = (r(ω))1/2.
The condition (14) introduces a branch indexµ taking the values 1 and 2 according

to the sign ofε(1)‖ (ω), positive and negative, respectively. The expressions of the interface
mode eigenvectors,u0,µ,p, are presented in table 1. As we shall see in section 5, for the
particular case of a heterostructure made of materials having thereststrahlenbands well
separated, the interface modes can be considered as interface-like substrate and interface-like
pseudo-morphic layer modes.

Table 1. The eigenmodes for DHS considered.

Eigenvalues Eigenvectors

ωm,µ,+ um,µ,+(k, x3) = Cm,µ,+
(
− ik

F+(k, ωm,µ,+, l, x3)

g⊥(ωm,µ,+, x3)
,

kγ (ωm,µ,+)
ε
(1)
‖ (ωm,µ,+)

ε‖(ωm,µ,+, x3)

F−(k, ωm,µ,+, l, x3)

g‖(ωm,µ,+, x3)

)
ωm,µ,− um,µ,−(k, x3) = Cm,µ,−

(
− ik

F−(k, ωm,µ,−, l, x3)

g⊥(ωm,µ,−, x3)
,

−kγ (ωm,µ,−)
ε
(1)
‖ (ωm,µ,−)

ε‖(ωm,µ,−, x3)

F+(k, ωm,µ,−, l, x3)

g‖(ωm,µ,−, x3)

)
ω0,µ,+ u0,µ,+(k, x3) = C0,µ,+

(
− ik

F0,+(k, ω0,µ,+, l, x3)

g⊥(ω0,µ,+, x3)
,

−kγ (ω0,µ,+)
ε
(1)
‖ (ω0,µ,+)

ε‖(ω0,µ,+, x3)

F0,−(k, ω0,µ,+, l, x3)

g‖(ω0,µ,+, x3)

)
ω0,µ,− u0,µ,−(k, x3) = C0,µ,−

(
− ik

F0,−(k, ω0,µ,−, l, x3)

g⊥(ω0,µ,−, x3)
,

−kγ (ω0,µ,−)
ε
(1)
‖ (ω0,µ,−)

ε‖(ω0,µ,−, x3)

F0,+(k, ω0,µ,−, l, x3)

g‖(ω0,µ,−, x3)

)

3.2. Confined modes in anisotropic layer

For the caser(ω) < 0 which determines the existence of periodical solutions (confined
modes) in the anisotropic domain of the heterostructures the eigenfrequenciesωm,µ,p are
obtained as solutions of the equation:

cos[γ (ω)kl] = pε
(1)
⊥ (ω)ε

(1)
‖ (ω)+ (ε(2)(ω))2

ε
(1)
⊥ (ω)ε

(1)
‖ (ω)− (ε(2)(ω))2

(17)

satisfying the condition

klγ (ωm,µ,p) ∈ ((m− 1)π,mπ) (18)
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with γ (ω) = |r(ω)|1/2. The parity and the branch indices are chosen according to the
following rules:

for p = +
{
m = 1, 3, 5, . . . ;µ = 1 if ε(1)‖ (ω)ε

(2)(ω) > 0

m = 2, 4, 6, . . . ;µ = 2 if ε(1)‖ (ω)ε
(2)(ω) < 0

(19a)

for p = −
{
m = 2, 4, 6, . . . ;µ = 1 if ε(1)‖ (ω)ε

(2)(ω) > 0

m = 1, 3, 5, . . . ;µ = 2 if ε(1)‖ (ω)ε
(2)(ω) < 0.

(19b)

The corresponding eigenvectors given in table 1 are periodical functions inside the
anisotropic layer and strongly decrease with the distance to the interface outside the layer.
For the different regions of the DHS the functionsFJ have the expressions given in table 2.

Table 2. The functionsFJ for the different regions of DHS.

FJ

J x3 < −l/2 |x3| 6 l/2 x3 > l/2

J = + cos[kγ (ω)l/2]ek(x3+l/2) cos[kγ (ω)x3] cos[kγ (ω)l/2]e−k(x3−l/2)

J = − − sin[kγ (ω)l/2]ek(x3+l/2) sin[kγ (ω)x3] sin[kγ (ω)l/2]e−k(x3−l/2)

J = 0,+ cosh[γ (ω)kl/2]ek(x3+l/2) cosh[γ (ω)kx3] cosh[γ (ω)hl/2]e−k(x3−l/2)

J = 0,− − sinh[γ (ω)kl/2]ek(x3+l/2) sinh[γ (ω)kx3] sinh[γ (ω)kl/2]e−k(x3−l/2)

In contradistinction with the situation encountered for isotropic heterostructures when
the confined modes are degenerate having the frequenciesω

(1)
T O andω(1)LO (Mori and Ando

1989), for the anisotropic heterostructures discussed here, the degeneracy is lifted and the
frequencies of the confined modes are distributed in two domains of frequency corresponding
to the valuesµ = 1, 2 in the relations (19).

In the particular case of materials havingreststrahlenbands well separated and in
the limit of thick anisotropic layer, these domains are those of quasi-transverse modes (ω

betweenω(1)T O,‖ andω(1)T O,⊥) and quasi-longitudinal ones (ω betweenω(1)LO,‖ andω(1)LO,⊥).
The normalized constantsCm,µ,p andC0,µ,p used in table 1 have the expressions:

Cm,µ,p =
{
ε0lk

2

4ω

[
dε(1)⊥
dω
+ γ 2(ω)

dε(1)‖
dω
+ psin[γ (ω)kl]

γ (ω)kl

(
dε(1)⊥
dω
− γ 2(ω)

dε(1)‖
dω

)
+2p

sin[γ (ω)kl]

kl

γ (ω)ε
(1)
‖ (ω)

ε(2)ω

dε(2)

dω

]∣∣∣∣
ω=ωm,µ,p

}−1/2

(20)

C0,µ,p =
{
ε0lk

2

4ω

[
p

(
dε(1)⊥
dω
− γ 2(ω)

dε(1)‖
dω

)
+ sinh[γ (ω)kl]

γ (ω)kl

(
dε(1)⊥
dω
+ γ 2(ω)

dε(1)‖
dω

)
−2

sinh[γ (ω)kl]

kl

γ (ω)ε
(1)
‖ (ω)

ε(2)ω

dε(2)

dω

]∣∣∣∣
ω=ω0,µ,p

}−1/2

. (21)

The obtained eigenvectors verify a relation of orthonormality. All the eigenvectors of the
DHS, the half-space modes included, satisfy a closure relation.

Developing the fields entering into the expression of the energy density (Brancus and
Mocuta 1995), appropriate also for an anisotropic DHS, in terms of obtained eigenvectors,
one finds the diagonal form of the Hamiltonian of optical phonons:

Hph =
∑

k,m,µ,p

h̄ωm,µ,p(k)(a
+
m,µ,p(k)am,µ,p(k)+ 1

2) (22)
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where a+m,µ,p(k) and am,µ,p(k) are the creation and annihilation operators, respectively,
satisfying bosonic-type commutation relations.

4. Electron–phonon interaction

The Hamiltonian which describes the electron–optical phonon interaction has the form:

He–ph = −e8(xe) (23)

where (−e) is the electron charge and8(xe) is the scalar potential (1) generated by the
polarization charges only.

Developing the scalar potential in terms of eigenfunctions presented in table 1, the
Hamiltonian of interest has the expression:

He–ph =
∑

k,m,µ,p

exp(ik · xe⊥)0m,µ,p(k, l, xe3)[am,µ,p(k)+ a+m,µ,p(−k)] (24)

where the coupling functions have the forms:

0m,µ,p(k, l, x
e
3) = −

(
h̄e2

2Aωm,µ,p

)1/2

Cm,µ,pFp(k, ωm,µ,p, l, x
e
3) (25a)

00,µ,p(k, l, x
e
3) = −

(
h̄e2

2Aω0,µ,p

)1/2

C0,µ,pF0,p(k, ω0,µ,p, l, x
e
3) (25b)

A being the area of the heterostructure in the (x1, x2) plane.
For the different domains of the heterostructure the expressions of the functionsFJ are

presented in table 2.
In contradistinction with the situation encountered in the case of isotropic

heterostructures, in the presence of anisotropy, an electron placed in the isotropic region of a
heterostructure interacts with the so-called confined modes. Also, an electron situated inside
the anisotropic region interacts with the confined modes having the frequency betweenω

(1)
T O,‖

andω(1)T O,⊥; in the case of a very thick heterostructure, these modes correspond to the quasi-
transverse modes of a 3D anisotropic uniaxial crystal. For a 3D uniaxial crystal, a measure
of the interaction strength is given by the angular average of the dimensionless Fröhlich
coupling constants,〈αµ(θ)〉AV . Though for a slightly anisotropic crystal of würtzite type
like CdS the value of the polaronic constant for these quasi-transverse modes is negligibly
small (Brancus and Mocuta 1995), for layered-type semiconductors such asα-HgI2 the
polaronic constant corresponding to the same type of phononic mode has an unexpectedly
large value (Brancus and Stan 1998).

The obtained results can be used to discuss the phonon modes and their interaction with
a conduction electron in some hypothetical heterostructures made of layered semiconductors
which are strongly anisotropic materials. However, due to their practical importance,
we shall present here the case of strained heterostructures made of zincblende-type
semiconductors. The induced anisotropy is comparable with the natural anisotropy found
in a würtzite-type crystal.

5. Bisotropically strained double heterostructures

Let us consider a double heterostructure containing a zincblende-type semiconductor layer
grown on the faces (001) or (111) of the same type of material, 2. For these two cases, as
a result of a difference between the lattice parameters of the adjacent materials, a uniaxial
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anisotropy of the strained layer appears. In order to avoid the effects induced by the
relaxation, we shall assume that the thickness of the strained layer does not exceed a critical
thickness.

Compatible with the constraints imposed on the heterostructure geometry which leads
to the results previously obtained, we shall assume that the thicknesses of both the buffer
and the cladding layers of the heterostructure are, practically, infinite.

In the context of the bisotropic strain model (Anastassakis 1990) for the pseudo-morphic
layer, uniaxially distorted, the componentsε(1)‖ andε(1)⊥ of the dielectric tensor are obtained

in terms of the phonon deformation potentials (PDPs),K
(L)
ij andK(T )

ij , where L and T are
indices standing for longitudinal and transverse optical phonons, and also in terms of low-
and high-frequency photoelastic coefficients, respectively.

5.1. Heterostructure grown on the face (001)

Following Anastassakis (1994), for this particular geometry of the tensile InP/GaAs/InP
DHS (Pistolet al 1992), for the parameters of the pseudo-morphic layer one obtains the
values: ε(1)‖ (∞) = 11.5, ε(1)⊥ (∞) = 11.7, ω(1)T O,‖ = 252 cm−1, ω(1)T O,⊥ = 255.6 cm−1,

ω
(1)
LO,‖ = 273.3 cm−1, ω(1)LO,⊥ = 281.1 cm−1, the lattice constants beingaInP = 5.869 Å and

aGaAs = 5.654 Å.
The above results have been obtained by considering for InP and unstrained GaAs,

the following values of the material parameters:ε(2)(∞) = 9.61, ω(2)T O = 304 cm−1,
ω
(2)
LO = 351 cm−1 andε(1)(∞) = 10.9, ω(1)T O = 269 cm−1, ω(1)LO = 292 cm−1, respectively.

In figure 2 the dispersion curves of the interface modes—dotted for an unstrained
heterostructure and solid curves for a bisotropically strained heterostructure—are presented
for the above-mentioned case. The interface modes occurring in the domain of the
reststrahlenband of InP (the branch indexµ = 1) are modified only to a very little extent
by the effect of the strains. The opposite situation is found for the modes which occur in
the reststrahlenband of GaAs, the frequency domain of which is (ω

(1)
T O, ω

(1)
LO) for unstrained

layer and is well marked by the effect of the strains, becoming (ω
(1)
T O,⊥, ω

(1)
LO,‖). In a rough

estimation, one can say that the dispersion curves for both symmetrical and antisymmetrical
interface modes of the branch (µ = 2) are shifted to lower frequencies, as a strain-induced
effect, with 14 and 20 cm−1, respectively.

We have plotted in figure 3 the dispersion curves of the confined modem = 1, µ = 1,
p = +, k for two thicknesses of GaAs pseudo-morphic layer obtained by Pistolet al
(1992). As a effect of the built-in strain distribution the degeneracy of the confined LO
phonon modes having the frequencyω(1)LO is lifted and the frequencies of these confined
modes (µ = 1) are distributed into a frequency domain, which in a (hypothetical) limit of a
very thick layer becomes (ω(1)LO,‖, ω

(1)
LO,⊥). A similar effect is also observed for the confined

modes havingµ = 2 for the branch index.
In figure 4 we present the effect of the strain distribution on the coupling functions

describing the electron–interface-phonon mode interaction by plotting as a function ofkl

the relative variation100,µ,p/0
is.
0,µ,p defined as:

100,µ,p/0
is.
0,µ,p = 0str.0,µ,p(k, l, l/2)/0

is.
0,µ,p(k, l, l/2)− 1 (26)

where the labels str. and is. represent the case of a strained and an isotropic heterostructure,
respectively. Excepting the modes (0, 1,+) for all the other interface modes of a strained
heterostructure one observed a well marked effect of the strain distribution on the strength
of the electron–phonon interaction.
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Figure 2. Dispersion curves of the interface-phonon modes for an InP/GaAs/InP DHS grown
on the face (001). The solid and the dotted curves are for a strained and an unstrained
heterostructure, respectively.

Figure 3. Dispersion curves of the confined quasi-longitudinal mode (m = 1, µ = 1, p = +)
of a strained InP/GaAs/InP DHS grown on the face (001), for two thicknesses of the pseudo-
morphic layer; the dotted and solid curves correspond tol = 28 Å and l = 18 Å, respectively.
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Figure 4. kl dependence of the relative variation100,µ,p/0
is.
0,µ,p(k, l, l/2) for all the interface

phonon modes of an InP/GaAs/InP DHS grown on the face (001).

For the two DHSs obtained by Pistolet al (1992), due to the presence of the strain
distribution, the strength of the electron–phonon interaction of the confined modes is
modified only to a small extent (as large as 5% forl = 18 Å and 3.5% forl = 28 Å).

5.2. Heterostructure grown on the face (111)

To exemplify this particular geometry we shall consider the case of a compressive
heterostructure obtained by growing a strained InP layer on the face (111) of a GaAs
substrate.

Analogue to the case previously discussed, by particularizing the results of Anastassakis
(1994), for the material parameters describing the anisotropic properties of the pseudo-
morphic InP layer one obtains the values:ε(1)‖ (∞) = 9.72, ε(1)⊥ (∞) = 8.9, ω(1)T O,‖ =
320.3 cm−1, ω(1)T O,⊥ = 328.7 cm−1, ω(1)LO,‖ = 369 cm−1, ω(1)LO,⊥ = 372.9 cm−1.

Using the values of these parameters and based on the relations (14)–(16), the dispersion
curves, for the interface phonon modes of this DHS are obtained and presented in figure 5
(the dotted and solid curves are for unstrained and strained heterostructures, respectively).
Once again, the effect of the strain distribution on the dispersion curves of the interface-
phonon modes affects, mainly, the behaviour of the modes occurring in thereststrahlen
band of the layer. As compared to the case of a tensile DHS presented in figure 2, for the
above-considered compressive heterostructure, the frequencies of the interface modes are
shifted towards the domain of higher frequencies with contributions estimated as 25 cm−1

and 18 cm−1 for the modes (0, 2,+, k) and (0, 2,−, k), respectively.
In figure 6, for kl = 0.2, the spatial dependences of the coupling functions of the

interaction between a conduction electron and the interface-phonon modes are plotted. The
strain distribution affects, mainly, the strength of the electron–phonon interaction for the
symmetrical interface modes.



Electron–phonon interaction in anisotropic DHS 3855

Figure 5. Dispersion curves of the interface modes of a GaAs/InP/GaAs DHS grown on the
face (111). The solid and the dotted curves are for a strained and an unstrained heterostructure,
respectively.

Figure 6. Spatial dependence of the coupling functions00,µ,p of the electron–interface-phonon
interactions of a GaAs/InP/GaAs DHS grown on the face (111), withl = 18 Å and kl = 0.2.
The dotted and the solid curves correspond to an unstrained and a strained heterostructure,
respectively.
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Figure 7. kl-dependence of the relative variation100,µ,p/0
is.
0,µ,p(k, l, l/2) for all the interface

phonon modes of a GaAs/InP/GaAs DHS grown on the face (111).

Figure 7 presents thekl-dependence of the relative variation due to the presence of the
strain distribution of the coupling functions. Though the effect of the strain distribution on
the behaviour of the dispersion law of the modes (0, 1,+, k) is unimportant, the relative
variation of the coupling function for the same modes has a notable value (30%), practically
in the whole range ofk. The opposite situation is encountered for the (0, 2,−, k) modes.

6. Conclusions

The dispersion laws and the normal modes of the optical phonons have been obtained in the
case of a double semiconductor heterostructure having as interjacent layer a uniaxial polar
material with the optical axis directed along the normal to the interface.

We have found also the form of the Hamiltonian describing electron–optical-phonon
interactions, thus generalizing, to this anisotropic case, the results presented by Mori and
Ando (1989) for isotropic heterostructures. To apply the obtained results to some particular
cases we have considered in the context of the bisotropical strain model (Anastassakis 1990)
a strained semiconductor double heterostructure, made by zincblende-type semiconductors
with pseudo-morphic layer uniaxially distorted by the built-in strain distribution.

The system cumulates both the effect of the anisotropy and that of the confinement. As
a result of the anisotropy, the degeneracies of the LO and TO confined modes of an isotropic
heterostructure are lifted; thus the obtained quasi-longitudinal and quasi-transverse confined
modes have the frequencies distributed into the domains (ω

(1)
LO,‖, ω

(1)
LO,⊥) and (ω(1)T O,‖, ω

(1)
T O,⊥),

respectively.
The effect of the built-in strain distribution on the confined modes leads to

anisotropic features comparable in magnitude with those found in some slightly anisotropic
semiconductors as CdS, InSe. The main effect is obtained on both the dispersion curves of



Electron–phonon interaction in anisotropic DHS 3857

the interface-phonon modes (see figures 2, 5) and on the coupling functions for the same
modes (see figures 4, 6, 7).

The obtained results can be applied in both cases, that of a natural anisotropic
heterostructure and that of a strained heterostructure, as well. Referring to this last case
we believe that, for very narrow interjacent layers, in discussing the effects determined by
the electron–optical-phonon interaction (polaron self-energy, scattering rate), the anisotropic
features of the interface-phonon spectra have to be considered in the future.
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